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Method for the Calculation of Mutual Coupling
Between Discontinuities in Planar Circuits

Bart L. A. Van Thielen and Guy A. E. Vandenbosch, Member, IEEE

Abstract—In this paper, a fast method for the calculation of mu-
tual coupling between discontinuities is described. The discontinu-
ities must be small compared to the wavelength and compared to
the distance between them. For most circuits, these assumptions
are valid. Under these circumstances, the component’s (disconti-
nuity) radiation behavior can be accurately modeled by using ad-
equately placed dipoles. This method uses far less unknowns than
the method of moments. If the distances between the components
become smaller or the components become bigger, then the accu-
racy can be improved by using more dipoles.

Index Terms—CAD, EMC, mutual coupling.

I. INTRODUCTION

A S MODERN circuits become smaller and the frequencies
that they work at become higher, parasitic coupling within

the circuits will inevitably start to influence the behavior of the
circuit more and more. Therefore, it is necessary to include the
influence of mutual coupling in the circuit simulators that are
used to design the circuit. The methods that are currently being
used to analyze mutual coupling in circuits need a lot of com-
puter memory and time to solve the circuit. This is because
they subdivide the whole circuit into rooftops, calculate all the
inter-rooftop couplings, and use these couplings to calculate the
current of the rooftops by solving a huge set of equations (i.e.,
the moment method).

A planar circuit can generally be regarded as being composed
of discontinuities and transmission lines connecting these dis-
continuities. This paper will describe a new method, which in-
volves calculating mutual coupling between the discontinuities
of the circuit instead of segmenting and solving the whole cir-
cuit at once. The described method will become one of the mod-
ules of an overall model for the calculation of mutual coupling
in planar circuits. Other modules will handle the couplings be-
tween transmission lines, from transmission lines to discontinu-
ities, and vice versa.

Discontinuities are either components (resistors, capacitors,
transistors, etc.) or metal (microstrip) structures (T-junction,
corner, open stub, etc.). No distinction will be made between
these two types of discontinuities in the remainder of this paper.

The key assumption of the new method is that, if the discon-
tinuities are small compared to the wavelength and distance be-
tween them is large compared to their size, their radiation be-
havior can be modeled as that of an elementary dipole. More
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than one dipole can be used per discontinuity if the above-men-
tioned assumptions are not met. Another assumption is that the
current on one discontinuity is only slightly influenced by the
other discontinuities in its vicinity (higher order coupling is ne-
glected). This is true if the coupling levels between the disconti-
nuities remain lower than about7 dB. Discontinuities (compo-
nents) that are coupled tighter than this must be taken together
to form a new component. The relationship between currents
and fields on the dipoles and incoming and outgoing transmis-
sion line waves, respectively, is described by an extension to the

-parameter model of the discontinuity.
In this paper, the results of the developed method are com-

pared with those of a standard method of moments (MoM). The
theory and corresponding software that implements this stan-
dard method are described in [1]–[4]. Other methods to solve
the problem of mutual coupling in circuits are the expansion
wave concept [5] and the fast multipole method [6]. The two
main differences of the described method with [5] and [6] are
as follows.

1) The method that is presented here is a library-based mod-
ular approach: the -parameters and dipole position and
excitation data are stored in model files for each disconti-
nuity. [5] and [6] do not split the circuit up into its (sepa-
rately solved) components, but solve it entirely, not taking
advantage of the specific properties (-parameters and
known current distributions) of its components.

2) The method that is proposed here only takes “first-order
coupling” into account. Higher order coupling (indirect
coupling between two components through reflections of
incident fields at others) is neglected. This results in a
further speed increase, while the results remain accurate
enough if the components are not tighter coupled than

7 dB (see above), which is the true for most circuits.

Due to these two differences, the new method is much faster and
needs less memory than [5] and [6].

II. DIPOLE EQUIVALENT OF A CURRENT DISTRIBUTION

In this section, we will describe how, under certain condi-
tions, a current distribution can be replaced by dipoles that gen-
erate approximately the same field distribution as the original
current distribution.

To rigorously calculate the field that a current distribution
generates, this distribution must be convolved with the appro-
priate Green’s function.

A possible simplification is to approximate the current dis-
tribution by three elementary dipoles, oriented along the-, -,
and -axis. The dipoles are currents flowing in an elementary
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Fig. 1. Current distribution (X -axis) and its equivalent (X -axis) placed at
its current center.

volume : , , and . is the current
density of the -directed dipole and is its volume. These
dipoles are placed in the “current center” of the current distri-
bution. For the -oriented dipole, this center is given by

(1)

where is the current density of the-oriented current. The
product must be equal to the total integrated current of
the original current distribution

(2)

The reason why this dipole will not generate a field that is
identical to that of the original current distribution is explained
below.

The relation between the field in an observation point and the
distance to the current generating this field is given by the
appropriate Green’s function. It is, in general, mainly a mixture
of (surface wave) and , (space wave) dependen-
cies, as described in [4]. Suppose that we only have ade-
pendency and we want to use the current center for the simple
one-dimensional case on the -axis of Fig. 1. The two equal
currents at a distance on the -axis are replaced by a
single one of double intensity (on the -axis) at the current
center, which is located at a distancefrom the origin. The rel-
ative error for this particular case can then be shown to be equal
to

(3)

In which is the field at the origin caused by the original
distribution and is the field caused by the equivalent, placed
at the current center. Equation (3) shows that the approximation
will improve when the distance/size ratio goes to infinity. As the
component size gets larger compared to the distance between
the components, the approximation becomes worse.

Another factor that will influence the accuracy of the dipole
model is the size of the component relative to the wavelength. If
the excitation frequency increases, then the current distribution
on the component will become more complex, needing more
dipoles to be modeled accurately.

Fig. 2. GeneralN -port usingM elementary dipoles to model radiation
behavior.

III. EXTENSION OF THE -PARAMETER MODEL

In this section, we will explain how, for a general disconti-
nuity (with an arbitrary number of ports and an arbitrary number
of dipoles), the -parameter model for the discontinuity can be
extended to include the effects of mutual coupling in the circuit
calculations.

In general, an incident waves on a port of a discontinuity will
cause outgoing waves on the ports and current distributions, dif-
fering for each port of incidence, within the volume of the dis-
continuity. The current distribution within the component will
generate incident fields on the other discontinuities of the cir-
cuit, which will cause outgoing waves on the ports of these other
discontinuities. Fig. 2 shows a general-port, which uses
dipoles to model the radiation behavior that is caused by the cur-
rent distributions.

The dependence of the outgoing port waves on the in-
cident port waves within one discontinuity is described by
the -parameter description of the discontinuity. This depen-
dence is shown for a general port in the following:

...
...

...
...

...
(4)

where is the reflection coefficient at port and is the
transmission coefficient from portto port .

The description only takes the fundamental transmission-line
mode into account. This implies that, at the reference plane of
the -parameter port, the higher order modes must have died
out. If needed, a piece of transmission line of sufficient length
must be added to the component to satisfy this condition.

The dependence of the outgoing port waves of one disconti-
nuity on the incident port waves of another one is calculated by
extending the -parameter description as described below.
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First, data is added that links the incident port waves to
the currents of the dipole model through the matrix in the
following:

...
...

. . .
...

... (5)

where is the current on dipole , caused by a 1-V incident
wave at port . The relation between the longitudinal compo-
nent of the incident fields on the dipoles and the outgoing
waves at the ports is then described through thematrix
as follows:

...
...

. . .
...

... (6)

where is the amplitude of the outgoing wave at portfor
a 1-V/m incident field at dipole . The full new extended de-
scription for the discontinuity then becomes

(7)

In which is the -parameter matrix, and and are the ma-
trices defined in (6) and (5). The submatrix describes the re-
flections of incident fields at the dipole model’s dipoles. Due to
these reflections, indirect paths can be formed between two dis-
continuities through other discontinuities. The additional fields
that are caused by these indirect paths are assumed to be small
compared to the field caused by the direct path. Therefore, the
influence on the -parameters of the global circuit of these re-
flections at discontinuities is negligible and the elements of the

submatrix can be set to zero. The results in the numerical re-
sult section prove the validity of this assumption.

The relation between the currents on one discontinuity’s
dipoles and the incident fields on another’s discontinuity’s
dipoles is given by the appropriate Green’s functions. The
field distribution for a dipole, positioned at the origin, is
derived from the current and charge Green’s function using the
mixed-potential expression that is described in [1]. In [1], it is
shown that the field, caused by a current distribution, can
be written as

(8)

in which is the observation location, are the source
coordinates, is the distance between source and observation,
is the Green’s function for current sources, andis the Green’s
function for charge sources. If the-dipole is modeled as two
charges at an infinitesimally small distance, with a current
with unit amplitude flowing between them, then the-dipole’s

- and -field distributions can be derived from (8)

(9)

The relations between the current on one dipole and the field it
causes on another one can be written as a matrix equation for
each combination of two discontinuities

(10)

In which is the vector containing the incident fields on the
dipoles of the th discontinuity and is the vector containing
the currents on the dipoles of theth discontinuity.

By using the additional dipole data in (5), (6), and (10), and
the -parameter description of (4), we are now able to describe
the circuits discontinuities including their interaction by mu-
tual coupling as one big-matrix. This is shown in (11), at the
bottom of this page, for a circuit containing discontinuities.
All the elements are (sub)matrices themselves. They describe
the direct paths between the discontinuities.The new matrix will
be named . Its number of ports is equal to the total number
of ports, summed over all the circuit’s discontinuities. Equation
(11) is only valid when the submatrix in (7) is set to zero.
If this is not the case, then the submatrices will become infinite
sums over the direct path and all the indirect paths. The circuit
would then have to be solved by a full matrix inversion, keeping
the dipole currents and fields as unknowns. This would slow the
method down considerably.

The matrix describes all the discontinuities and their mu-
tual interaction through radiation as a single big-port network.
All the ports of the discontinuities in the circuit (except the
externally fed ones) are connected through transmission lines.
The -parameter description (normalized to the characteristic
impedance of the line) for a transmission-line connection is

0
0

(12)

Where is the propagation constant of the line andis its length.
By renormalizing the port impedances of the transmission lines

...

...

...
. . .

...

...

(11)
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to the corresponding port impedance of the connected discon-
tinuity port and inserting the transmission line (12) into (11),
we can eliminate all the unknown waves at the ports that are
connected through transmission lines. What remains is an-pa-
rameter description for the entire circuit between its externally
excited ports. This description includes the mutual coupling be-
tween the discontinuities, but not between discontinuities and
transmission lines and between transmission lines. These cou-
plings are calculated using another procedure, which is imple-
mented within separate modules. These procedures are not the
topic of this paper, but are described in [7] and [8].

IV. DETERMINATION OF OPTIMAL DIPOLE POSITIONS AND

AND MATRICES FORDIPOLE MODEL

In this section, two procedures will be described to calculate
the and matrices of the above-described-parameter ex-
tension and the optimal positions for the dipoles that model the
radiation behavior. We assume that the optimal dipole positions
do not change much as a function of frequency so that they can
be calculated at a fixed frequency.

Both methods use the field that the discontinuity generates to
calculate the optimal dipole positions. The advantage of starting
from the field is that this field can either be calculated (using a
MoM if the current distribution is known) or be measured in a
test setup such as the one described in [9] (if the current distri-
bution is not known). Measurements can be used for packaged
components with unknown internal geometry. Calculations are
possible if the component’s internal structure is entirely known
(e.g., monolithic-microwave integrated-circuit (MMIC) compo-
nents).

As was mentioned in Section II, the Green’s functions for a
multilayer substrate can be quite complex. Therefore, it is not
easy to use an analytical method to calculate the ideal dipole
positions from the current distribution and the Green’s function.

A first method uses the correlation function of the field gen-
erated by a dipole and the field generated by the current distri-
bution in the substrate. This correlation function is shown in the
following:

(13)

and are the fields generated by the discontinuity and
the dipole when they are placed at the origin.is the angle at
which the dipole is positioned. The maximum of this correlation
function yields the position and orientation at
which the dipoles field will exhibit most similarity to the field
generated by the current distribution. By subtracting the field of
the dipole at this position from and using (13) again on
the remaining field, other dipoles can be extracted, improving
the similarity between the fields produced by the model and by
the original current distribution.

The second method uses an optimization procedure to posi-
tion and excite -, -, or -oriented dipoles in such a way
that their combined field resembles the field produced by the

current distribution as closely as possible in test points that
are positioned in a circle with radius around the current dis-
tribution. To do this, the optimization procedure will need to ad-
just input parameters (, , and positions and complex
excitation for the dipoles) to optimize output parameters
(complex , , and components of the fields in each test
point). The relation between the dipole excitations and
the fields in the test points (for given dipole posi-
tions) is given by the following linear set of equations:

...

(14)

in which is a matrix that describes the relation between a cur-
rent on a dipole and the field it causes in a test point. This means
that, for given dipole positions (and, thus, certain values of),
the optimal excitations can be calculated using a least square
method in terms of the dipole positions. This leaves only the
dipole positions as input parameters. The output pa-
rameters (the fields in the test points: ) are used to calculate
a scalar cost function using (15). This cost function is the sum
of the squared differences between the current dipole models
fields and the original discontinuity’s fields

(15)

in which is the position of the th dipole and
is the current on the th dipole that was calculated using the
least square method. The current distribution on the disconti-
nuity will be different for each port of the discontinuity that is
excited. The total cost is the sum of the costs for each distribu-
tion (port). This means that the dipole positions that are optimal,
in a mean sense, for all the distributions at the same time are
searched for.

The starting positions of the dipoles for the optimization are
calculated using the current center and the spreading of the cur-
rent distributions. If one dipole is used it is placed at the center,
two dipoles are placed at the centerthe spreading and three
dipoles are placed at the centerthe spreading and one at the
center. This is done for the- and -oriented dipoles separately.
For the dipoles, the -oriented current distribution is used and
vice versa. If more than three dipoles (per current component)
are used, than the starting positions can be chosen manually or
the points where the current distribution derivative changes sign
(maxima) can be used. Other methods ([10] and [11]) can be
used to find good starting points starting from the current distri-
bution.

The number of dipoles that are needed to model the disconti-
nuity with enough accuracy increases if: 1) the discontinuity’s
complexity increases; 2) the discontinuity becomes bigger rela-
tive to the wavelength; and 3) the discontinuity becomes bigger
relative to its distance to the other components. The examples
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in the numerical section give a general idea about the number
of dipoles that have to be used. A very coarse rule could be one
dipole for every 18 basis functions of the MoM. The quality of
the model can be checked immediately after the optimization
procedure from the correlation and error graphs shown in Sec-
tion V. If the distance between the discontinuities becomes very
small and the coupling between the discontinuities becomes
high, then the shape of the current on the discontinuities starts
to change. At this point, adding more dipoles will not improve
the results any more because a fundamental assumption of the
dipole model (that the second-order coupling can be neglected)
is not valid any more. The maximum allowable coupling levels
at which second-order coupling can still be neglected are de-
scribed in [7] and [8].

The optimization itself is an iterative process involving the
following two steps.

Step 1) Calculate the gradient of the cost function (a func-
tion of the dipole positions) at the starting point.

Step 2) Perform a one-dimensional optimization to find the
optimal point along a line that goes through the
starting point and has a direction given by the gra-
dient.

After step 2, step 1 is repeated with the new optimal positions
as starting positions. These steps are repeated until the cost be-
comes stable.

The matrix (the dipole excitations for each port) is recalcu-
lated for each frequency in the frequency list of the model. This
is done using the least square method while keeping the dipoles
fixed at their earlier (at the midband frequency) optimized po-
sitions. Changing the frequency will result in changing the
coupling coefficients in (14).

It can be proven that the matrix can easily be deduced from
the matrix through reciprocity. Since the shape of the pattern
should be the same for transmission and receiving, we can say
that the elements of theand matrix must be the same, except
for a constant factor that we will call the receiving constant

(16)

We can now write the coupling between two random different
dipole models (discontinuities) the first dipole model has
dipoles and the second one hasdipoles. For , we get

(17)

is equal to

(18)

Due to reciprocity, is equal to and is equal to
. The double summation in (18) can be rearranged so that

it is equal to the double summation of (17). Therefore,
must be equal to . Since we used two arbitrary dipole
models, must be a universal constant, which has the same
value for every possible dipole model. To calculate the value of
this constant, we can now choose the easiest possible case.

Fig. 3. Equivalent circuit for the calculation ofR .

Fig. 4. Two T-junctions used to check the method.

This case is shown in Fig. 3. The “discontinuity” that we are
going to model is just a piece of transmission line with infinites-
imally small length , which is fed at both ends by two equally
wide transmission lines with a characteristic impedance of.
We choose equal to 1 . The outgoing waves for a
certain incident field will then be equal to

(19)

If we would model this piece of transmission line by a horizontal
dipole, then its excitation coefficient would be equal to .
Therefore, we can conclude that is equal to 1/2.

V. NUMERICAL RESULTS

The method described above is tested for the simple case of
two shaped T-junctions. This structure is shown Fig. 4. A three-
and a six-dipole model are calculated for this discontinuity and
the fields generated by the models are compared to those of the
component as a function of frequency and distance. The calcu-
lated model is then used to calculate the-parameters for the
two coupled T-junctions.

The T-junctions are placed on a substrate with and a
thickness of 0.631 mm. For this substrate, the lines have a char-
acteristic impedance of 50. The results of the new method
will be compared to those of the normal MoM. Both T-junc-
tions are then segmented using a square mesh of 0.20.2 mm
segments (3 mm/15), which will generate 88 unknowns (rooftop
basis functions).

Using the optimization technique described in Section IV, a
dipole model is calculated for this T-junction in a frequency
band of 1–30 GHz. In all the following figures, the T-junction
or its model is placed as shown in Fig. 5. The continuous line
in the figures refers to the-oriented fields and the dashed line
refers to the -oriented fields.
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Fig. 5. Current distribution (rooftops) for T-junction excited at middle port at 5 GHz (left-hand side) and 30 GHz (right-hand side).

Fig. 6. Ratio of maximum error to maximum field value for excitation at ports 1 (left-hand side) and 2 (right-hand side). Six-dipole model. Frequency scan at
4 mm.

At the start of the optimization procedure, with the six
dipoles, initial position set by the current center and the current
spread as was described in Section IV, the cost, given by (15), is
equal to 177. The optimization of the dipole positions reduces
this to 32. The current distributions on the T-junction when
excited at port 2 at 5 and 30 GHz are shown in Fig. 5. Each
arrow represents a basis function. At 30 GHz, the wavelength
is about equal to the component’s size (3 mm) and the current
is varying because of the phase differences across the length.
This implies that we will need more dipoles to model the
component at this frequency. The first model uses six dipoles. It
is verified by comparing the field it generates at the test points
to the original field distribution. This is shown as a function of
frequency in Fig. 6. The 100 test points are placed in a circle
of 4 mm around the center of the model. The graphs show
the ratio of the maximum error (over all the test points) to the
maximum field strength (over all the test points). The frequency
at which the dipole positions are optimized is 5.5 GHz, which

is (logarithmically) at the middle of the frequency band. The
same can now be done for a fixed frequency as a function of
the observation distance. This is shown in Fig. 7 for the lowest
frequency (1 GHz). As can be expected, the correlation is worst
at close range and is maximum when the distance is equal to the
radius of the test-point circle because the model was optimized
for this distance. At larger distances, the ratio of maximum error
to maximum field strength goes to a steady value of30 dB.
The fluctuations in the curve at greater distances are due to
numerical problems with the Green’s function. At greater
distances, the derivatives of the Green’s function, needed in
(9), become very small. Therefore, they become dominated by
numerical noise. The solution for this is to use more points
for the interpolation of the Green’s function, but this increases
the computation time. The worst result is obtained when the
frequency and distance are the lowest. Fig. 8 shows a polar
plot at 2 mm and 1 GHz to illustrate this. The continuous line
represents the original field and the “” line represents the
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Fig. 7. Ratio of maximum error to maximum field value for excitation at ports 1 (left-hand side) and 2 (right-hand side). Six-dipole model. Distance scan at
1 GHz.

Fig. 8. Polar scan of six-dipole T-junction model, compared to original field, at 2 mm and 1 GHz.

model’s field. The left-hand side of the figure is the-oriented
field and the right-hand side shows the-oriented field.

For higher frequencies, the results become better: the error
ratio is below 35 dB for each port above 4 mm at 30 GHz. The
reason for this is that the feeding charges that appear at the ports
of the T-junction become smaller as the frequency increases.
The current at a port is equal to the time derivative of the feeding
charge. Therefore, the needed feeding charge becomes smaller
for increasing frequency and constant current amplitude. The
feeding charges make it harder to model the component’s radi-
ation pattern; hence, the decreasing model quality at lower fre-
quencies. At even higher frequencies, the model will fail be-
cause the phase variation across the discontinuity cannot be
modeled accurately enough with the six dipoles, the answer to
this problem is to increase the number of dipoles. This problem
is illustrated in Fig. 9 by using a three-dipole model (one dipole
for each leg of the T-junction) for the T-junction. The test points
for the optimization of the three-dipole model are placed at a

Fig. 9. Frequency dependency of the error ratio for the middle line for a
three-dipole model with test points at 9-mm distance.
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Fig. 10. S-parameters for the structure shown in Fig. 4. The continuous line was calculated using the MoM. The “+” line is calculated using the six-dipole model.

larger distance (9 mm) because, at 4 mm, no good result can be
obtained using only three dipoles. As the frequency increases,
the results clearly deteriorate.

The model shown in Figs. 6–8 will now be used to calculate
the mutual coupling between the two T-junctions, as depicted
in Fig. 3. The ports are numbered as indicated on this figure.
The calculation is for a distance mm. Fig. 10 shows the

-parameters for this case, obtained with the dipole model (“”
line), compared to the solution with the moment method (con-
tinuous line).

The sharp increase in the coupling levels at the lowest fre-
quencies is caused by the earlier mentioned feeding charges
that feed the current at the positions of the ports. As explained
before, these charges will become bigger as the frequency de-
creases and raise the coupling levels. If the component is fed by
lines (these were not taken into account here), then the feeding
charges of the component and the feeding charges of the lines
that are feeding it will cancel out.

The last example handles a more complex structure. The
structure is a shunt series resonator, placed on a substrate with
a thickness of 1.2 mm and a relative permittivity of 2.2. The
first (wanted) resonance is at 4.2 GHz and results in a dip
of 25 dB in . A second (parasitic) resonance occurs at
7.5 GHz. Two of these resonators are positioned as shown
in Fig. 11 (the resonator on the right has been rotated 180).
The port numbering of this four-port is shown in this figure.
The structure is about 10 10 mm (about one-quarter of a
wavelength at 8 GHz). The distance between the outer edges
of the two resonators is 5 mm. The coupling between the two
shunt resonators is calculated using 17 dipoles per resonator
for the dipole model and using 340 (rooftop) basis functions
per resonator for the MoM. The model is first tested separately,
again by plotting the maximum error to maximum field ratio.
The graphs on the right-hand side of Fig. 12 show the ratio at
4.2 GHz, fed at ports 1 and 2, as a function of the distance from
the center of the model. The graphs on the left-hand side show
the ratio as a function of frequency at 12 mm from the center
of the model. Fig. 13 shows the coupling from ports 3 to 1 and

Fig. 11. Two shunt series resonators composing a four-port. Each segment is
0.5� 0.5 mm.

from ports 4 to 1, calculated with the dipole model and using
the MoM. The maximum error is about 1.5 dB and 7. This is
still a good result because this is a very difficult situation due
to the following.

1) The component is large compared to the wavelength and
compared to the distance between the components.

2) The component is actually a circuit in itself, which con-
tains about seven discontinuities.

3) The component is very frequency selective and the op-
timal dipole positions are only calculated for one fre-
quency (in this case, 4.2 GHz). The optimal dipole ex-
citations are recalculated for each frequency though.

To illustrate the speed difference between the regular MoM
and the dipole model calculations, we will now try to estimate
the number of floating point operations (flops) as a function of
the number of components in the circuit for both methods. To
do this, we must first assume a few “typical” values for a com-
ponent. , the typical number of basis functions per compo-
nent, is set to 50. , the typical number of dipoles per compo-
nent is set to six. , the typical number of ports per component,
is set to two. The number of flops needed to couplecompo-
nents using the dipole model is then given by

flops
1

2
2 (20)
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Fig. 12. Maximum error to maximum field ratio for a series resonator of Fig. 11. Left-hand-side graphs: ratio as a function of frequency at 12 mm from thecenter
of the model, right-hand-side graphs: ratio as a function of distance at 4.2 GHz. Upper graphs: port 1 fed, lower graphs: port 2 fed.

Fig. 13. Comparison ofS andS for the two resonators calculated using
the dipole model(+) and using MoM (continuous line).

The number of flops needed to solve the integral equations is
more or less proportional to , where is the total number
of unknowns . To get a more accurate esti-
mate, we used the flops command in Matlab to get the exact
number of flops needed to solve the matrix. The number of flops
needed for both methods is compared in Fig. 14. It is clear that
the method proposed in this paper needs significantly less flops
than the MoM, especially for larger circuits. From (20), we can
also conclude that the calculation time increases proportional
to the square of the mean number of dipoles that is used in the

Fig. 14. Comparison of the needed number of floating point operations for
MoM (+line) and for the dipole model (continuous line) as a function of the
number of components in the circuit.

components, whereas in the MoM, it increases proportional to
the third power of the number of basis functions that is used. It
must also be noted that a separate “dipole Green’s function” can
be used that contains the coupling between dipoles as a function
of distance, whereas the coupling between basis functions al-
ways involves integrating the Green’s function over the source
and observation basis functions. This results in a further speed
up of the described method over the MoM.



164 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002

VI. CONCLUSIONS

The main advantage of this method is the speed up: for the
first example, the MoM uses 2.142 s to set up its matrix, 0.345 s
to solve it, and 3.427 s to deembed the six ports. The same ma-
chine (HP C-160 160-MHz risc processor) needs only 0.152 to
calculate the dipole couplings and the corresponding-param-
eters. For large circuits, the speed up will become much bigger
because the inversion time will rise proportional to the third
power of the number of unknowns. The dipole model needs no
matrix inversion and will work much faster for large circuits.

Another advantage is that the dipole model needs much less
memory than the moment method because only the couplings
between the dipoles of two discontinuities need to be kept in
memory. It has been demonstrated in this paper that, for the
coupling situations that arise between components in a regular
circuit, the new method is accurate enough (max. 1.5-dB devi-
ations) to be used for the design of circuits.
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